PLoS ONE (Jan 2014)

A polymer-based magnetic resonance tracer for visualization of solid tumors by 13C spectroscopic imaging.

  • Yoshikazu Suzuki,
  • Mitsuru Iida,
  • Iwao Miura,
  • Toshiro Inubushi,
  • Shigehiro Morikawa

DOI
https://doi.org/10.1371/journal.pone.0102132
Journal volume & issue
Vol. 9, no. 7
p. e102132

Abstract

Read online

Morphological imaging precedes lesion-specific visualization in magnetic resonance imaging (MRI) because of the superior ability of this technique to depict tissue morphology with excellent spatial and temporal resolutions. To achieve lesion-specific visualization of tumors by MRI, we investigated the availability of a novel polymer-based tracer. Although the 13C nucleus is a candidate for a detection nucleus because of its low background signal in the body, the low magnetic resonance sensitivity of the nucleus needs to be resolved before developing a 13C-based tracer. In order to overcome this problem, we enriched polyethylene glycol (PEG), a biocompatible polymer, with 13C atoms. 13C-PEG40,000 (13C-PEG with an average molecular weight of 40 kDa) emitted a single 13C signal with a high signal-to-noise ratio due to its ability to maintain signal sharpness, as was confirmed by in vivo investigation, and displayed a chemical shift sufficiently distinct from that of endogenous fat. 13C-PEG40,000 intravenously injected into mice showed long retention in circulation, leading to its effective accumulation in tumors reflecting the well-known phenomenon that macromolecules accumulate in tumors because of leaky tumor capillaries. These properties of 13C-PEG40,000 allowed visualization of tumors in mice by 13C spectroscopic imaging. These findings suggest that a technique based on 13C-PEG is a promising strategy for tumor detection.