Molecules (Jul 2020)

Structure-Based Virtual Screening, Synthesis and Biological Evaluation of Potential FAK-FAT Domain Inhibitors for Treatment of Metastatic Cancer

  • Sahar B. Kandil,
  • Samuel R. Jones,
  • Sonia Smith,
  • Stephen E. Hiscox,
  • Andrew D. Westwell

DOI
https://doi.org/10.3390/molecules25153488
Journal volume & issue
Vol. 25, no. 15
p. 3488

Abstract

Read online

Focal adhesion kinase (FAK) is a tyrosine kinase that is overexpressed and activated in several advanced-stage solid cancers. In cancer cells, FAK promotes the progression and metastasis of tumours. In this study, we used structure-based virtual screening to filter a library of more than 210K compounds against the focal adhesion targeting FAK-focal adhesion targeting (FAT) domain to identify 25 virtual hit compounds which were screened in the invasive breast cancer line (MDA-MB-231). Most notably, compound I showed low micromolar antiproliferative activity, as well as antimigratory activity. Moreover, examination in a model of triple negative breast cancer (TNBC), revealed that, despite not effecting FAK phosphorylation, compound I significantly impairs proliferation whilst impairing focal adhesion growth and turnover leading to reduced migration. Further optimisation and synthesis of analogues of the lead compound I using a four-step synthetic procedure was performed, and analogues were assessed for their antiproliferative activity against three breast cancer (MDA-MB-231, T47D, BT474) cell lines and one pancreatic cancer (MIAPaCa2) cell line. Compound 5f was identified as a promising lead compound with IC50 values in the range of 4.59–5.28 μM in MDA-MB-231, T47D, BT474, and MIAPaCa2. Molecular modelling and pharmacokinetic studies provided more insight into the therapeutic features of this new series.

Keywords