Sensors (Feb 2024)
Unmanned Aerial Vehicle-Based Structural Health Monitoring and Computer Vision-Aided Procedure for Seismic Safety Measures of Linear Infrastructures
Abstract
Computer vision in the structural health monitoring (SHM) field has become popular, especially for processing unmanned aerial vehicle (UAV) data, but still has limitations both in experimental testing and in practical applications. Prior works have focused on UAV challenges and opportunities for the vibration-based SHM of buildings or bridges, but practical and methodological gaps exist specifically for linear infrastructure systems such as pipelines. Since they are critical for the transportation of products and the transmission of energy, a feasibility study of UAV-based SHM for linear infrastructures is essential to ensuring their service continuity through an advanced SHM system. Thus, this study proposes a single UAV for the seismic monitoring and safety assessment of linear infrastructures along with their computer vision-aided procedures. The proposed procedures were implemented in a full-scale shake-table test of a natural gas pipeline assembly. The objectives were to explore the UAV potential for the seismic vibration monitoring of linear infrastructures with the aid of several computer vision algorithms and to investigate the impact of parameter selection for each algorithm on the matching accuracy. The procedure starts by adopting the Maximally Stable Extremal Region (MSER) method to extract covariant regions that remain similar through a certain threshold of image series. The feature of interest is then detected, extracted, and matched using the Speeded-Up Robust Features (SURF) and K-nearest Neighbor (KNN) algorithms. The Maximum Sample Consensus (MSAC) algorithm is applied for model fitting by maximizing the likelihood of the solution. The output of each algorithm is examined for correctness in matching pairs and accuracy, which is a highlight of this procedure, as no studies have ever investigated these properties. The raw data are corrected and scaled to generate displacement data. Finally, a structural safety assessment was performed using several system identification models. These procedures were first validated using an aluminum bar placed on an actuator and tested in three harmonic tests, and then an implementation case study on the pipeline shake-table tests was analyzed. The validation tests show good agreement between the UAV data and reference data. The shake-table test results also generate reasonable seismic performance and assess the pipeline seismic safety, demonstrating the feasibility of the proposed procedure and the prospect of UAV-based SHM for linear infrastructure monitoring.
Keywords