Materials (May 2017)

Enhanced CO2 Adsorption on Activated Carbon Fibers Grafted with Nitrogen-Doped Carbon Nanotubes

  • Yu-Chun Chiang,
  • Wei-Lien Hsu,
  • Shih-Yu Lin,
  • Ruey-Shin Juang

DOI
https://doi.org/10.3390/ma10050511
Journal volume & issue
Vol. 10, no. 5
p. 511

Abstract

Read online

In this paper, multiscale composites formed by grafting N-doped carbon nanotubes (CNs) on the surface of polyamide (PAN)-based activated carbon fibers (ACFs) were investigated and their adsorption performance for CO2 was determined. The spaghetti-like and randomly oriented CNs were homogeneously grown onto ACFs. The pre-immersion of cobalt(II) ions for ACFs made the CNs grow above with a large pore size distribution, decreased the oxidation resistance, and exhibited different predominant N-functionalities after chemical vapor deposition processes. Specifically, the CNs grafted on ACFs with or without pre-immersion of cobalt(II) ions were characterized by the pyridine-like structures of six-member rings or pyrrolic/amine moieties, respectively. In addition, the loss of microporosity on the specific surface area and pore volume exceeded the gain from the generation of the defects from CNs. The adsorption capacity of CO2 decreased gradually with increasing temperature, implying that CO2 adsorption was exothermic. The adsorption capacities of CO2 at 25 °C and 1 atm were between 1.53 and 1.92 mmol/g and the Freundlich equation fit the adsorption data well. The isosteric enthalpy of adsorption, implying physical adsorption, indicated that the growth of CNTs on the ACFs benefit CO2 adsorption.

Keywords