Geophysical Research Letters (Jun 2024)
Transient Creep in Olivine at Shallow Mantle Pressures: Implications for Time‐Dependent Rheology in Post‐Seismic Deformation
Abstract
Abstract Transient creep in olivine aggregates has been studied by stress‐relaxation experiments at pressures of 1.7–3.6 GPa and at temperatures of ≤1020 K in a DIA apparatus. Time‐dependent deformation of olivine at small strains (<0.07) was monitored with an ∼1 s of time resolution using a combination of a high‐flux synchrotron X‐ray and a cadmium telluride imaging detector. The observed deformation was found to follow the Burgers creep function with the transient relaxation time ranging from 50 (±20) to 1,880 (±750) s. We show that the Burgers creep for olivine cannot account for the low viscosities in early post‐seismic deformation reported by geodetic observations (<7 × 1017 Pa·s). In contrast, the time‐dependent increase in viscosity observed in late post‐seismic deformation (1018−1020 Pa·s) is explained by the Burgers rheology, suggesting that the combination of the Burgers model and another model is needed for the interpretation of post‐seismic deformation.
Keywords