Sweet-Potato-Vine-Based High-Performance Porous Carbon for Methylene Blue Adsorption
Wenlin Zhang,
Yuhong Zhao,
Qinhong Liao,
Zhexin Li,
Dengwei Jue,
Jianmin Tang
Affiliations
Wenlin Zhang
Chongqing Key Laboratory of Economic Plant Biotechnology, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, Chongqing 402160, China
Yuhong Zhao
Chongqing Key Laboratory of Economic Plant Biotechnology, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, Chongqing 402160, China
Qinhong Liao
Chongqing Key Laboratory of Economic Plant Biotechnology, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, Chongqing 402160, China
Zhexin Li
Chongqing Key Laboratory of Economic Plant Biotechnology, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, Chongqing 402160, China
Dengwei Jue
Chongqing Key Laboratory of Economic Plant Biotechnology, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, Chongqing 402160, China
Jianmin Tang
Chongqing Key Laboratory of Economic Plant Biotechnology, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, Chongqing 402160, China
In this study, sweet-potato-vine-based porous carbon (SPVPC) was prepared using zinc chloride as an activating and pore-forming agent. The optimised SPVPC exhibited abundant porous structures with a high specific surface area of 1397.8 m2 g−1. Moreover, SPVPC exhibited excellent adsorption characteristics for removing methylene blue (MB) from aqueous solutions. The maximum adsorption capacity for MB reached 653.6 mg g−1, and the reusability was satisfactory. The adsorption kinetics and isotherm were in good agreement with the pseudo-second-order kinetics and Langmuir models, respectively. The adsorption mechanism was summarised as the synergistic effects of the hierarchically porous structures in SPVPC and various interactions between SPVPC and MB. Considering its low cost and excellent adsorption performance, the prepared porous carbon is a promising adsorbent candidate for dye wastewater treatment.