Leida xuebao (Oct 2024)
Novel Forward-looking Three-dimensional Imaging Based on Vortex Electromagnetic Wave Radar
Abstract
Vortex Electromagnetic Waves (VEMWs) have unique wavefront phase modulation characteristics. As a new degree of freedom in the diversity of radar transmitters, the VEMW Radar (VEMWR) provides Radar Cross-Section (RCS) diversity and improves signal and information processing dimensions and performances. The detection and imaging performances of VEMWR have been verified in various radar systems. This article focuses on the applying background of forward-looking radar imaging and proposes a time-division multiplemode scanning imaging method based on a Uniform Circular Array (UCA) system with multiple transmitters and a single receiver at the UCA center. First, we establish the forward-looking VEMWR imaging mode and corresponding signal mode. Next, an improved three-Dimensional (3D) back-projection and range-Doppler algorithm is proposed, which utilizes the magnitude difference at various elevation angles of multimode VEMW, phase difference at different azimuth angles, and Doppler effect resulting from the relative motion of the radar and target to achieve 3D imaging of the target. As the elevation angle increases, the beam pattern gain of the high-mode VEMW decreases sharply due to the energy divergence of the VEMW. The proposed method can maintain stability at low or high elevation angles using the energy distribution of multiple modes in the spatial domain. Imaging results of point targets revealed that the normalized gain of target-imaging results is equivalent either at low or high elevation angles within the multimode VEMW field of view. The proposed method is validated through experiments with an aircraft target. Based on the imaging results, it is verified that the proposed method can accurately reconstruct the 3D structure of complex targets.
Keywords