PLoS ONE (Jan 2018)
Neck muscle responses of driver and front seat passenger during frontal-oblique collisions.
Abstract
BackgroundLow-velocity motor vehicle crashes often lead to severe and chronic neck disorders also referred to as whiplash-associated disorders (WAD). The etiology of WAD is still not fully understood. Many studies using a real or simulated collision scenario have focused on rear-end collisions, whereas the kinematics and muscular responses during frontal-oblique collisions have hardly been investigated. In particular for rear-end collisions, drivers were shown to have a higher WAD risk than front seat passengers. Yet, independently from the impact direction, neither the muscular nor the kinematic responses of drivers and front seat passengers have been compared to date, although some findings indicate that the neck muscles have the potential to alter the head and neck kinematics, and that the level of neck muscle activity during impact may be relevant for the emergence of WAD.ObjectiveIn this study, we quantitatively examined the subjects' neck muscle activity during low-velocity left-frontal-oblique impacts to gain further insights into the neuromuscular mechanism underlying whiplash-like perturbations that may lead to WAD.MethodsIn a within-subject study design, we varied several impact parameters to investigate their effect on neck muscle response amplitude and delay. Fifty-two subjects experienced at least ten collisions while controlling for the following parameters: change in velocity Δv (3 / 6 km/h), seating position (driver / front seat passenger), and deliberate pre-tension of the musculature (tense / relaxed) to account for a potential difference between an expected and an unexpected crash. Ten of the 52 subjects additionally ran the same experimental conditions as above, but without wearing a safety belt.FindingsThere were significant main effects of Δv and muscle pre-tension on the reflex amplitude but not of seating position. As for the reflex delay, there was a significant main effect of muscle pre-tension, but neither of Δv nor of seating position. Moreover, neither the safety belt nor its asymmetrical orientation had an influence on the reflexive responses of the occupants.ConclusionIn summary, we did not find any significant differences in the reflex amplitude and delay of the neck musculature between drivers and front seat passengers. We therefore concluded that an increased risk of the driver sustaining WAD in frontal-oblique collisions, if it exists, cannot be due to differences in the reflexive responses.