Journal of Advances in Modeling Earth Systems (Aug 2019)
An Overview of the Atmospheric Component of the Energy Exascale Earth System Model
- P. J. Rasch,
- S. Xie,
- P.‐L. Ma,
- W. Lin,
- H. Wang,
- Q. Tang,
- S. M. Burrows,
- P. Caldwell,
- K. Zhang,
- R. C. Easter,
- P. Cameron‐Smith,
- B. Singh,
- H. Wan,
- J.‐C. Golaz,
- B. E. Harrop,
- E. Roesler,
- J. Bacmeister,
- V. E. Larson,
- K. J. Evans,
- Y. Qian,
- M. Taylor,
- L. R. Leung,
- Y. Zhang,
- L. Brent,
- M. Branstetter,
- C. Hannay,
- S. Mahajan,
- A. Mametjanov,
- R. Neale,
- J. H. Richter,
- J.‐H. Yoon,
- C. S. Zender,
- D. Bader,
- M. Flanner,
- J. G. Foucar,
- R. Jacob,
- N. Keen,
- S. A. Klein,
- X. Liu,
- A.G. Salinger,
- M. Shrivastava,
- Y. Yang
Affiliations
- P. J. Rasch
- Pacific Northwest National Laboratory Richland WA USA
- S. Xie
- Lawrence Livermore National Laboratory Livermore CA USA
- P.‐L. Ma
- Pacific Northwest National Laboratory Richland WA USA
- W. Lin
- Brookhaven National Laboratory Upton NY USA
- H. Wang
- Pacific Northwest National Laboratory Richland WA USA
- Q. Tang
- Lawrence Livermore National Laboratory Livermore CA USA
- S. M. Burrows
- Pacific Northwest National Laboratory Richland WA USA
- P. Caldwell
- Lawrence Livermore National Laboratory Livermore CA USA
- K. Zhang
- Pacific Northwest National Laboratory Richland WA USA
- R. C. Easter
- Pacific Northwest National Laboratory Richland WA USA
- P. Cameron‐Smith
- Lawrence Livermore National Laboratory Livermore CA USA
- B. Singh
- Pacific Northwest National Laboratory Richland WA USA
- H. Wan
- Pacific Northwest National Laboratory Richland WA USA
- J.‐C. Golaz
- Lawrence Livermore National Laboratory Livermore CA USA
- B. E. Harrop
- Pacific Northwest National Laboratory Richland WA USA
- E. Roesler
- Sandia National Laboratory Albuquerque NM USA
- J. Bacmeister
- National Center for Atmospheric Research Boulder CO USA
- V. E. Larson
- Department of Mathematical Sciences University of Wisconsin‐Milwaukee Milwaukee WI USA
- K. J. Evans
- Oak Ridge National Laboratory Oak Ridge TN USA
- Y. Qian
- Pacific Northwest National Laboratory Richland WA USA
- M. Taylor
- Sandia National Laboratory Albuquerque NM USA
- L. R. Leung
- Pacific Northwest National Laboratory Richland WA USA
- Y. Zhang
- Lawrence Livermore National Laboratory Livermore CA USA
- L. Brent
- Pacific Northwest National Laboratory Richland WA USA
- M. Branstetter
- Oak Ridge National Laboratory Oak Ridge TN USA
- C. Hannay
- National Center for Atmospheric Research Boulder CO USA
- S. Mahajan
- Oak Ridge National Laboratory Oak Ridge TN USA
- A. Mametjanov
- Argonne National Laboratory Lemont IL USA
- R. Neale
- National Center for Atmospheric Research Boulder CO USA
- J. H. Richter
- National Center for Atmospheric Research Boulder CO USA
- J.‐H. Yoon
- Department of Earth System Science Gwangju Institute of Science and Technology Gwangju South Korea
- C. S. Zender
- Department of Climate and Space Sciences and Engineering University of California Irvine Irvine CA USA
- D. Bader
- Lawrence Livermore National Laboratory Livermore CA USA
- M. Flanner
- Department of Climate and Space Sciences and Engineering University of Michigan Ann Arbor MI USA
- J. G. Foucar
- Sandia National Laboratory Albuquerque NM USA
- R. Jacob
- Argonne National Laboratory Lemont IL USA
- N. Keen
- Lawrence Berkeley National Laboratory Berkeley CA USA
- S. A. Klein
- Lawrence Livermore National Laboratory Livermore CA USA
- X. Liu
- Department of Atmospheric Science University of Wyoming Laramie WY USA
- A.G. Salinger
- Sandia National Laboratory Albuquerque NM USA
- M. Shrivastava
- Pacific Northwest National Laboratory Richland WA USA
- Y. Yang
- Pacific Northwest National Laboratory Richland WA USA
- DOI
- https://doi.org/10.1029/2019MS001629
- Journal volume & issue
-
Vol. 11,
no. 8
pp. 2377 – 2411
Abstract
Abstract The Energy Exascale Earth System Model Atmosphere Model version 1, the atmospheric component of the Department of Energy's Energy Exascale Earth System Model is described. The model began as a fork of the well‐known Community Atmosphere Model, but it has evolved in new ways, and coding, performance, resolution, physical processes (primarily cloud and aerosols formulations), testing and development procedures now differ significantly. Vertical resolution was increased (from 30 to 72 layers), and the model top extended to 60 km (~0.1 hPa). A simple ozone photochemistry predicts stratospheric ozone, and the model now supports increased and more realistic variability in the upper troposphere and stratosphere. An optional improved treatment of light‐absorbing particle deposition to snowpack and ice is available, and stronger connections with Earth system biogeochemistry can be used for some science problems. Satellite and ground‐based cloud and aerosol simulators were implemented to facilitate evaluation of clouds, aerosols, and aerosol‐cloud interactions. Higher horizontal and vertical resolution, increased complexity, and more predicted and transported variables have increased the model computational cost and changed the simulations considerably. These changes required development of alternate strategies for tuning and evaluation as it was not feasible to “brute force” tune the high‐resolution configurations, so short‐term hindcasts, perturbed parameter ensemble simulations, and regionally refined simulations provided guidance on tuning and parameterization sensitivity to higher resolution. A brief overview of the model and model climate is provided. Model fidelity has generally improved compared to its predecessors and the CMIP5 generation of climate models.
Keywords