PLOS Digital Health (Aug 2024)
Applied artificial intelligence for global child health: Addressing biases and barriers.
Abstract
Given the potential benefits of artificial intelligence and machine learning (AI/ML) within healthcare, it is critical to consider how these technologies can be deployed in pediatric research and practice. Currently, healthcare AI/ML has not yet adapted to the specific technical considerations related to pediatric data nor adequately addressed the specific vulnerabilities of children and young people (CYP) in relation to AI. While the greatest burden of disease in CYP is firmly concentrated in lower and middle-income countries (LMICs), existing applied pediatric AI/ML efforts are concentrated in a small number of high-income countries (HICs). In LMICs, use-cases remain primarily in the proof-of-concept stage. This narrative review identifies a number of intersecting challenges that pose barriers to effective AI/ML for CYP globally and explores the shifts needed to make progress across multiple domains. Child-specific technical considerations throughout the AI/ML lifecycle have been largely overlooked thus far, yet these can be critical to model effectiveness. Governance concerns are paramount, with suitable national and international frameworks and guidance required to enable the safe and responsible deployment of advanced technologies impacting the care of CYP and using their data. An ambitious vision for child health demands that the potential benefits of AI/Ml are realized universally through greater international collaboration, capacity building, strong oversight, and ultimately diffusing the AI/ML locus of power to empower researchers and clinicians globally. In order that AI/ML systems that do not exacerbate inequalities in pediatric care, teams researching and developing these technologies in LMICs must ensure that AI/ML research is inclusive of the needs and concerns of CYP and their caregivers. A broad, interdisciplinary, and human-centered approach to AI/ML is essential for developing tools for healthcare workers delivering care, such that the creation and deployment of ML is grounded in local systems, cultures, and clinical practice. Decisions to invest in developing and testing pediatric AI/ML in resource-constrained settings must always be part of a broader evaluation of the overall needs of a healthcare system, considering the critical building blocks underpinning effective, sustainable, and cost-efficient healthcare delivery for CYP.