Ceramics (Dec 2023)
Effects of Composition Variations on Mechanochemically Synthesized Lithium Metazirconate-Based Ceramics and Their Resistance to External Influences
Abstract
The study examines the influence of variations in the compositions of components for the production of lithium-containing ceramics based on lithium metazirconate obtained by the method of mechanochemical grinding and subsequent thermal sintering. For component variation, two compositions were used, consisting of zirconium dioxide (ZrO2) and two distinct types of lithium-containing materials: lithium perchlorate (LiClO4·3H2O) and lithium carbonate (Li2CO3). Adjusting the concentration of these components allowed for the production of two-phase ceramics with varying levels of impurity phases. Using X-ray phase analysis methods, it was determined that the use of LiClO4·3H2O results in the formation of a monoclinic phase, Li2ZrO3, with impurity inclusions in the orthorhombic phase, LiO2. On the other hand, when Li2CO3 is used, the resulting ceramics comprise a mixture of two phases, Li2ZrO3 and Li6Zr2O7. During the studies, it was established that the formation of impurity inclusions in the composition of ceramics leads to an increase in the stability of strength properties with varying mechanical test conditions, as well as stabilization of thermophysical parameters and a decrease in thermal expansion during long-term high-temperature tests. It has been established that in the case of two-phase ceramics Li2ZrO3/Li6Zr2O7 in which the dominance of the Li6Zr2O7 phase is observed during high-temperature mechanical tests, a more pronounced decrease in resistance to cracking is observed, due to thermal expansion of the crystal lattice.
Keywords