Energies (Dec 2022)

Power Grid Infrastructural Resilience against Extreme Events

  • Ahmed Daeli,
  • Salman Mohagheghi

DOI
https://doi.org/10.3390/en16010064
Journal volume & issue
Vol. 16, no. 1
p. 64

Abstract

Read online

Extreme weather events are one of the main causes of large-scale power outages in distribution systems. The changing climate has led to an increase in the frequency and severity of these events, which, if not mitigated, are expected to lead to more instances of widespread outages and the severe societal and economic damages that ensue. Protecting the power grid against such events, which are high impact yet low frequency, requires a paradigm shift in grid design practices. In recent years, many researchers have focused on the resilience of the power grid against extreme weather events by proposing various grid hardening and/or redundancy solutions. The goal of this paper is to provide a survey of the literature related to the infrastructural resilience of the power grid against extreme events. Currently, no standard definitions or metrics exist for power grid resilience, and researchers adopt various models for quantifying and assessing it. Hence, a review of the most commonly used definitions and metrics for resilience is provided first, with a discussion of their advantages and disadvantages. Next, the paper presents an extensive and critical review of the solution methodologies proposed in the literature for improving the infrastructural resilience of the power grid. The shortcomings of the current solution methods and gaps in research are identified, followed by a discussion of the future directions in research.

Keywords