Scientific Reports (Aug 2017)

Quantitative response relationships between net nitrogen transformation rates and nitrogen functional genes during artificial vegetation restoration following agricultural abandonment

  • Honglei Wang,
  • Na Deng,
  • Duoyang Wu,
  • Shu Hu

DOI
https://doi.org/10.1038/s41598-017-08016-8
Journal volume & issue
Vol. 7, no. 1
pp. 1 – 8

Abstract

Read online

Abstract A comprehensive understanding of how microbial associated with nitrogen (N) cycling respond to artificial vegetation restoration is still lacking, particularly in arid to semi-arid degraded ecosystems. We compared soil net N mineralization rates and the abundance of bacteria, archaea, and eleven N microbial genes on the northern Loess Plateau of China during the process of artificial vegetation restoration. The quantitative relationships between net N mineralization rates and N microbial genes were determined. We observed a significant difference of net transformation rates of NH4 +-N (Ra), NO3 −-N (Rd), and total mineralization (Rm), which rapidly decreased in 10-year soils and steadily increased in the 10–30-year soils. Different N functional microbial groups responded to artificial vegetation restoration distinctly and differentially, especially for denitrifying bacteria. Stepwise regression analysis suggested that Ra was collectively controlled by AOA-amoA and Archaea; Rd was jointly governed by narG, napA, nxrA, and bacreria; and Rm was jointly controlled by napA, narG, nirK, nirS, norB, nosZ, and nxrA.