Remote Sensing (Jun 2021)

Analysis of the Future Land Use Land Cover Changes in the Gaborone Dam Catchment Using CA-Markov Model: Implications on Water Resources

  • Botlhe Matlhodi,
  • Piet K. Kenabatho,
  • Bhagabat P. Parida,
  • Joyce G. Maphanyane

DOI
https://doi.org/10.3390/rs13132427
Journal volume & issue
Vol. 13, no. 13
p. 2427

Abstract

Read online

Land use/land cover (LULC) changes have been observed in the Gaborone dam catchment since the 1980s. A comprehensive analysis of future LULC changes is therefore necessary for the purposes of future land use and water resource planning and management. Recent advances in geospatial modelling techniques and the availability of remotely sensed data have become central to the monitoring and assessment of both past and future environmental changes. This study employed the cellular automata and Markov chain (CA-Markov) model combinations to simulate future LULC changes in the Gaborone dam catchment. Classified Landsat images from 1984, 1995, 2005 and 2015 were used to simulate the likely LULCs in 2015 and 2035. Model validation compared the simulated and observed LULCs of 2015 and showed a high level of agreement with Kappa variation estimates of Kno (0.82), Kloc (0.82) and Kstandard (0.76). Simulation results indicated a projected increase of 26.09%, 65.65% and 55.78% in cropland, built-up and bare land categories between 2015 and 2035, respectively. Reductions of 16.03%, 28.76% and 21.89% in areal coverage are expected for shrubland, tree savanna and water body categories, respectively. An increase in built-up and cropland areas is anticipated in order to meet the population’s demand for residential, industry and food production, which should be taken into consideration in future plans for the sustainability of the catchment. In addition, this may lead to water quality and quantity (both surface and groundwater) deterioration in the catchment. Moreover, water body reductions may contribute to water shortages and exacerbate droughts in an already water-stressed catchment. The loss of vegetal cover and an increase in built-up areas may result in increased runoff incidents, leading to flash floods. The output of the study provides useful information for land use planners and water resource managers to make better decisions in improving future land use policies and formulating catchment management strategies within the framework of sustainable land use planning and water resource management.

Keywords