International Journal of Photoenergy (Jan 2013)

Fabrication of High Transparency Diamond-Like Carbon Film Coating on D263T Glass at Room Temperature as an Antireflection Layer

  • Chii-Ruey Lin,
  • Hong-Ming Chang,
  • Chien-Kuo Chang

DOI
https://doi.org/10.1155/2013/612163
Journal volume & issue
Vol. 2013

Abstract

Read online

This study intends to deposit high transmittance diamond-like carbon (DLC) thin films on D263T glass substrate at room temperature via a diamond powder target using the radio frequency (RF) magnetron sputtering technique. Moreover, various process parameters were used to tune the properties of the thin films by using the Taguchi method. Experimental results show that the content of sp3 bonded carbon decreases in accordance with the effect of the substrate temperature. In addition, the hardness of all as-deposited single-layer DLC films ranges from 13.2 to 22.5 GPa, and the RMS surface roughness was improved significantly with the decrease in sputtering pressure. The water repellent of the deposited DLC films improved significantly with the increase of the sp3 content, and its contact angle was larger than that of the noncoated one by 1.45 times. Furthermore, the refraction index (n) of all as-deposited DLC films ranges from 1.95 to 2.1 at λ = 600 nm. These results demonstrate that the thickness increased as the reflectance increased. DLC film under an RF power of 150 W possesses high transmissive ability (>81%) and low average reflectance ability (<9.5%) in the visible wavelengths (at λ = 400–700 nm).