Exogenous Nitric Oxide Delays Plant Regeneration from Protoplast and Protonema Development in <i>Physcomitrella</i> <i>patens</i>
Daniela Cervantes-Pérez,
Angélica Ortega-García,
Rigoberto Medina-Andrés,
Ramón Alberto Batista-García,
Verónica Lira-Ruan
Affiliations
Daniela Cervantes-Pérez
Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos. Av. Universidad 1001. Col Chamilpa. Cuernavaca, Morelos 62210, Mexico
Angélica Ortega-García
Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos. Av. Universidad 1001. Col Chamilpa. Cuernavaca, Morelos 62210, Mexico
Rigoberto Medina-Andrés
Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos. Av. Universidad 1001. Col Chamilpa. Cuernavaca, Morelos 62210, Mexico
Ramón Alberto Batista-García
Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos. Av. Universidad 1001. Col Chamilpa. Cuernavaca, Morelos 62210, Mexico
Verónica Lira-Ruan
Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos. Av. Universidad 1001. Col Chamilpa. Cuernavaca, Morelos 62210, Mexico
Nitric oxide (NO) has been recognized as a major player in the regulation of plant physiology and development. NO regulates cell cycle progression and cell elongation in flowering plants and green algae, although the information about NO function in non-vascular plants is scarce. Here, we analyze the effect of exogenous NO on Physcomitrella patens protonema growth. We find that increasing concentrations of the NO donor sodium nitroprusside (SNP) inhibit protonema relative growth rate and cell length. To further comprehend the effect of NO on moss development, we analyze the effect of SNP 5 and 10 µM on protoplast regeneration and, furthermore, protonema formation compared with untreated plants (control). Isolated protoplasts were left to regenerate for 24 h before starting the SNP treatments that lasted five days. The results show that SNP restrains the protoplast regeneration process and the formation of new protonema cells. When SNP treatments started five days after protoplast isolation, a decrease in cell number per protonema filament was observed, indicating an inhibition of cell cycle progression. Our results show that in non-vascular plants, NO negatively regulates plant regeneration, cell cycle and cell elongation.