Technologies (Aug 2023)

Efficient Deep Learning-Based Data-Centric Approach for Autism Spectrum Disorder Diagnosis from Facial Images Using Explainable AI

  • Mohammad Shafiul Alam,
  • Muhammad Mahbubur Rashid,
  • Ahmed Rimaz Faizabadi,
  • Hasan Firdaus Mohd Zaki,
  • Tasfiq E. Alam,
  • Md Shahin Ali,
  • Kishor Datta Gupta,
  • Md Manjurul Ahsan

DOI
https://doi.org/10.3390/technologies11050115
Journal volume & issue
Vol. 11, no. 5
p. 115

Abstract

Read online

The research describes an effective deep learning-based, data-centric approach for diagnosing autism spectrum disorder from facial images. To classify ASD and non-ASD subjects, this method requires training a convolutional neural network using the facial image dataset. As a part of the data-centric approach, this research applies pre-processing and synthesizing of the training dataset. The trained model is subsequently evaluated on an independent test set in order to assess the performance matrices of various data-centric approaches. The results reveal that the proposed method that simultaneously applies the pre-processing and augmentation approach on the training dataset outperforms the recent works, achieving excellent 98.9% prediction accuracy, sensitivity, and specificity while having 99.9% AUC. This work enhances the clarity and comprehensibility of the algorithm by integrating explainable AI techniques, providing clinicians with valuable and interpretable insights into the decision-making process of the ASD diagnosis model.

Keywords