Pathogens (Jan 2023)
The Mechanisms Involved in the Fluoroquinolone Resistance of <i>Salmonella enterica</i> Strains Isolated from Humans in Poland, 2018–2019: The Prediction of Antimicrobial Genes by In Silico Whole-Genome Sequencing
Abstract
Salmonellosis remains the second most common zoonosis in Europe. Resistance to fluoroquinolones (FQs) in Salmonella has been increasing worldwide, with WHO considering FQ-resistant Salmonella spp. as high-priority pathogens. The aim of this study was a retrospective analysis of the molecular mechanisms of FQ resistance, detected among clinical ciprofloxacin-resistant Salmonella enterica belonging to the most common serotypes. The whole genome sequences (WGS) of tested isolates were also analysed for the occurrence of other antimicrobial resistance determinants. Out of a total of 1051 Salmonella collected in the years 2018–2019, 447 strains belonging to the most common serotypes in Poland were selected were screened for FQ resistance using the pefloxacin disc test according to EUCAST recommendations. All pefloxacin-resistant isolates were confirmed as ciprofloxacin-resistant using the E-test. A total of 168 (37.6%) Salmonella enterica, which belonged to seven serotypes, were resistant to ciprofloxacin (mostly Hadar, Virchow and Newport). A hundred randomly selected Salmonella were investigated by WGS. A total of 127 QRDR mutations in GyrA and ParC were identified in 93 isolates. The qnr genes were the only PMQR determinants detected and were found in 19% of the sequenced isolates. Moreover, 19 additional resistance genes (including: bla,,tet, sul, aad, aac-, ant-, aph-, floR, cmlA) were identified among the FQ-resistant Salmonella tested that confer resistance to clinically important antibiotics such as β-lactams, tetracyclines, sulphonamides, aminoglycosides and phenicol, respectively). In conclusion, FQ resistance of human Salmonella in Poland is rising towards a critical level and needs to be tightly monitored.
Keywords