PeerJ (Jun 2020)
Incorporating reef fish avoidance behavior improves accuracy of species distribution models
Abstract
Species distribution models (SDMs) are used to interpret and map fish distributions based on habitat variables and other drivers. Reef fish avoidance behavior has been shown to vary in the presence of divers and is primarily driven by spearfishing pressure. Diver avoidance behavior or fish wariness may spatially influence counts and other descriptive measures of fish assemblages. Because fish assemblage metrics are response variables for SDMs, measures of fish wariness may be useful as predictors in SDMs of fishes targeted by spearfishing. We used a diver operated stereo-video system to conduct fish surveys and record minimum approach distance (MAD) of targeted reef fishes inside and outside of two marine reserves on the island of Oʻahu in the main Hawaiian Islands. By comparing MAD between sites and management types we tested the assumption that it provides a proxy for fish wariness related to spearfishing pressure. We then compared the accuracy of SDMs which included MAD as a predictor with SDMs that did not. Individual measures of MAD differed between sites though not management types. When included as a predictor, MAD averaged at the transect level greatly improved the accuracy of SDMs of targeted fish biomass.
Keywords