Scientific Reports (Apr 2022)

Identifying influential spreaders in complex networks for disease spread and control

  • Xiang Wei,
  • Junchan Zhao,
  • Shuai Liu,
  • Yisi Wang

DOI
https://doi.org/10.1038/s41598-022-09341-3
Journal volume & issue
Vol. 12, no. 1
pp. 1 – 11

Abstract

Read online

Abstract Identifying influential spreaders is an important task in controlling the spread of information and epidemic diseases in complex networks. Many recent studies have indicated that the identification of influential spreaders is dependent on the spreading dynamics. Finding a general optimal order of node importance ranking is difficult because of the complexity of network structures and the physical background of dynamics. In this paper, we use four metrics, namely, betweenness, degree, H-index, and coreness, to measure the central attributes of nodes for constructing the disease spreading models and target immunization strategies. Numerical simulations show that spreading processes based on betweenness centrality lead to the widest range of propagation and the smallest epidemic threshold for all six networks (including four real networks and two BA scale-free networks generated according to Barabasi–Albert algorithm). The target immunization strategy based on the betweenness centrality of nodes is the most effective for BA scale-free networks but displays poor immune effect for real networks in identifying the most important spreaders for disease control. The immunization strategy based on node degrees is the most effective for the four real networks. Findings show that the target immune strategy based on the betweenness centrality of nodes works best for standard scale-free networks, whereas that based on node degrees works best for other nonstandard scale-free networks. The results can provide insights into understanding the different metrics of measuring node importance in disease transmission and control.