Opuscula Mathematica (Jan 2015)
Simple eigenvectors of unbounded operators of the type “normal plus compact”
Abstract
The paper deals with operators of the form \(A=S+B\), where \(B\) is a compact operator in a Hilbert space \(H\) and \(S\) is an unbounded normal one in \(H\), having a compact resolvent. We consider approximations of the eigenvectors of \(A\), corresponding to simple eigenvalues by the eigenvectors of the operators \(A_n=S+B_n\) (\(n=1,2, \ldots\)), where \(B_n\) is an \(n\)-dimensional operator. In addition, we obtain the error estimate of the approximation.
Keywords