PLoS ONE (Jan 2012)

Nuclear RNA sequencing of the mouse erythroid cell transcriptome.

  • Jennifer A Mitchell,
  • Ieuan Clay,
  • David Umlauf,
  • Chih-Yu Chen,
  • Catherine A Moir,
  • Christopher H Eskiw,
  • Stefan Schoenfelder,
  • Lyubomira Chakalova,
  • Takashi Nagano,
  • Peter Fraser

DOI
https://doi.org/10.1371/journal.pone.0049274
Journal volume & issue
Vol. 7, no. 11
p. e49274

Abstract

Read online

In addition to protein coding genes a substantial proportion of mammalian genomes are transcribed. However, most transcriptome studies investigate steady-state mRNA levels, ignoring a considerable fraction of the transcribed genome. In addition, steady-state mRNA levels are influenced by both transcriptional and posttranscriptional mechanisms, and thus do not provide a clear picture of transcriptional output. Here, using deep sequencing of nuclear RNAs (nucRNA-Seq) in parallel with chromatin immunoprecipitation sequencing (ChIP-Seq) of active RNA polymerase II, we compared the nuclear transcriptome of mouse anemic spleen erythroid cells with polymerase occupancy on a genome-wide scale. We demonstrate that unspliced transcripts quantified by nucRNA-seq correlate with primary transcript frequencies measured by RNA FISH, but differ from steady-state mRNA levels measured by poly(A)-enriched RNA-seq. Highly expressed protein coding genes showed good correlation between RNAPII occupancy and transcriptional output; however, genome-wide we observed a poor correlation between transcriptional output and RNAPII association. This poor correlation is due to intergenic regions associated with RNAPII which correspond with transcription factor bound regulatory regions and a group of stable, nuclear-retained long non-coding transcripts. In conclusion, sequencing the nuclear transcriptome provides an opportunity to investigate the transcriptional landscape in a given cell type through quantification of unspliced primary transcripts and the identification of nuclear-retained long non-coding RNAs.