Frontiers in Bioscience-Landmark (Sep 2023)
The Effects of Probiotic Lactobacillus rhamnosus GG on Fecal Flora and Serum Markers of Renal Injury in Mice with Chronic Kidney Disease
Abstract
Background: In this study, we analyzed intestinal flora in an experimental mouse model of chronic kidney disease (CKD) and investigated whether oral supplementation with probiotic Lactobacillus rhamnosus GG could slow the decline in renal function and inflammatory status of mice with CKD. Methods: We surgically induced chronic kidney disease in C57BL/6J male mice aged 8–9 weeks. We used dual-stage 5/6 nephrectomy for this, while the mock group underwent a mock procedure. The experimental (CKD mice) and mock group were administered a daily dose of 10 × 109 colony forming unit (CFU) of probiotic L. rhamnosus GG or 2 g of maltodextrin as a placebo by oral gavage, respectively, for 5 weeks. At the end of the experiment, the fecal samples of the mice were collected and prepared for intestinal microbial diversity analysis. We examined the serum chemistry and renal histology of the mice. Results: Important serum and blood biomarkers were associated with the development of CKD, including increased serum concentrations of creatine, cystatin C, blood urea nitrogen (BUN), and a protein—interleukin-6 (denoted as IL-6), whereas decreased serum albumin concentration was also observed in the mice with CKD. The intestinal flora of the mice with CKD significantly declined in terms of diversity, richness, and homogeneity. The consumption of L. rhamnosus GG probiotic via oral gavage significantly decreased the serum concentration level present in creatinine and blood urea nitrogen. However, it increased albumin in the group with CKD. After probiotic treatment, serum IL-6 levels dropped considerably, and the kidney histopathology score in mice with CKD who were given L. rhamnosus GG improved. Moreover, supplementation with the probiotic significantly improved floral richness and lineage diversity in the mice with CKD.Conclusions: In this study, we found that probiotics significantly attenuated renal failure development, reduced serum levels of proinflammatory cytokine IL-6, and increased the abundance and lineage diversity of intestinal flora in mice with chronic kidney disease.
Keywords