Ecotoxicology and Environmental Safety (Dec 2021)

Innovative green/non-toxic Bi2S3@g-C3N4 nanosheets for dark antimicrobial activity and photocatalytic depollution: Turnover assessment

  • Shimaa M. Abdel-Moniem,
  • Mohamed A. El-Liethy,
  • Hanan S. Ibrahim,
  • Mohamed E.M. Ali

Journal volume & issue
Vol. 226
p. 112808

Abstract

Read online

Herein, green and non-toxic bismuth sulphide@graphitic carbon nitride (Bi2S3@g-C3N4) nanosheets (NCs) were firstly synthesized by ultrasonicated-assisted method and characterized with different tool. Bi2S3@g-C3N4 NCs antimicrobial activity tested against three types of microbes. As well the heterostructured Bi2S3@g-C3N4 NCs was investigated for removing dye and hexavalent chromium under visible light and showed high efficiency of photocatalytic oxidation/reduction higher than g-C3N4 alone, attributing to lower recombination photogenerated electron-hole pairs. Bi2S3@g-C3N4 NCs showed high antimicrobial efficiencies against Staphylococcus aureus (S. aureus) as a Gram positive bacterium, Escherichia coli (E. Coli)as a Gram negative bacterium and Candida albicans (C. albicans) and that the disinfection rates are 99.97%, 99.98% and 99.92%, respectively. The core mechanism is that the bacterial membrane could be destroyed by reactive oxygen species. The Bi2S3@g-C3N4 NCs is promising for environmental disinfection including water and public facilities disinfection and solar photocatalytic depollution. Turnover number (TON) and Turnover frequency (TOF) are used as concise assessment indicator for photocatalytic efficiency.

Keywords