Nuclear Engineering and Technology (Dec 2021)

Effect of rare earth dopants on the radiation shielding properties of barium tellurite glasses

  • P. Vani,
  • G. Vinitha,
  • M.I. Sayyed,
  • Maha M. AlShammari,
  • N. Manikandan

Journal volume & issue
Vol. 53, no. 12
pp. 4106 – 4113

Abstract

Read online

Rare earth doped barium tellurite glasses were synthesised and explored for their radiation shielding applications. All the samples showed good thermal stability with values varying between 101 °C and 135 °C based on dopants. Structural properties showed the dominance of matrix elements compared to rare earth dopants in forming the bridging and non-bridging atoms in the network. Bandgap values varied between 3.30 and 4.05 eV which was found to be monotonic with respective rare earth dopants indicating their modification effect in the network. Various radiation shielding parameters like linear attenuation coefficient, mean free path and half value layer were calculated and each showed the effect of doping. For all samples, LAC values decreased with increase in energy and is attributed to photoelectric mechanism. Thulium doped glasses showed the highest value of 1.18 cm−1 at 0.245 MeV for 2 mol.% doping, which decreased in the order of erbium, holmium and the base barium tellurite glass, while half value layer and mean free paths showed an opposite trend with least value for 2 mol.% thulium indicating that thulium doped samples are better attenuators compared to undoped and other rare earth doped samples. Studies indicate an increased level of thulium doping in barium tellurite glasses can lead to efficient shielding materials for high energy radiation.

Keywords