Interpreting anomalies observed in oxide semiconductor TFTs under negative and positive bias stress
Jong Woo Jin,
Arokia Nathan,
Pedro Barquinha,
Luís Pereira,
Elvira Fortunato,
Rodrigo Martins,
Brian Cobb
Affiliations
Jong Woo Jin
LPICM, CNRS, Ecole Polytechnique, Université Paris Saclay, 91128, Palaiseau, France
Arokia Nathan
Engineering Department, University of Cambridge, Cambridge, CB3 0FA, United Kingdom
Pedro Barquinha
i3N/CENIMAT, Department of Materials Science, Faculty of Science and Technology, Universidade NOVA de Lisboa and CEMOP/UNINOVA, Campus de Caparica, 2829-516 Caparica, Portugal
Luís Pereira
i3N/CENIMAT, Department of Materials Science, Faculty of Science and Technology, Universidade NOVA de Lisboa and CEMOP/UNINOVA, Campus de Caparica, 2829-516 Caparica, Portugal
Elvira Fortunato
i3N/CENIMAT, Department of Materials Science, Faculty of Science and Technology, Universidade NOVA de Lisboa and CEMOP/UNINOVA, Campus de Caparica, 2829-516 Caparica, Portugal
Rodrigo Martins
i3N/CENIMAT, Department of Materials Science, Faculty of Science and Technology, Universidade NOVA de Lisboa and CEMOP/UNINOVA, Campus de Caparica, 2829-516 Caparica, Portugal
Brian Cobb
Holst Centre/TNO, Eindhoven, 5656 AE, The Netherlands
Oxide semiconductor thin-film transistors can show anomalous behavior under bias stress. Two types of anomalies are discussed in this paper. The first is the shift in threshold voltage (VTH) in a direction opposite to the applied bias stress, and highly dependent on gate dielectric material. We attribute this to charge trapping/detrapping and charge migration within the gate dielectric. We emphasize the fundamental difference between trapping/detrapping events occurring at the semiconductor/dielectric interface and those occurring at gate/dielectric interface, and show that charge migration is essential to explain the first anomaly. We model charge migration in terms of the non-instantaneous polarization density. The second type of anomaly is negative VTH shift under high positive bias stress, with logarithmic evolution in time. This can be argued as electron-donating reactions involving H2O molecules or derived species, with a reaction rate exponentially accelerated by positive gate bias and exponentially decreased by the number of reactions already occurred.