Molecules (Jul 2020)

Scalable Green Approach Toward Fragrant Acetates

  • Eva Puchl’ová,
  • Peter Szolcsányi

DOI
https://doi.org/10.3390/molecules25143217
Journal volume & issue
Vol. 25, no. 14
p. 3217

Abstract

Read online

The advantageous properties of ethylene glycol diacetate (EGDA) qualify it as a useful substitute for glycerol triacetate (GTA) for various green applications. We scrutinised the lipase-mediated acetylation of structurally diverse alcohols in neat EGDA furnishing the range of naturally occurring fragrant acetates. We found that such enzymatic system exhibits high reactivity and selectivity towards activated (homo) allylic and non-activated primary/secondary alcohols. This feature was utilised in the scalable multigram synthesis of fragrant (Z)-hex-3-en-1-yl acetate in 70% yield. In addition, the Lipozyme 435/EGDA system was also found to be applicable for the chemo-selective acetylation of (hydroxyalkyl) phenols as well as for the kinetic resolution of chiral secondary alcohols. Lastly, its discrimination power was demonstrated in competitive experiments of equimolar mixtures of two isomeric alcohols. This enabled the practical synthesis of 1-pentyl acetate isolated as a single product in 68% yield from the equimolar mixture of 1-pentanol and 3-pentanol.

Keywords