Applied Sciences (Jun 2020)

Spectrophotometric Determination of Trace Concentrations of Copper in Waters Using the Chromogenic Reagent 4-Amino-3-Mercapto-6-[2-(2-Thienyl)Vinyl]-1,2,4-Triazin-5(4H)-One: Synthesis, Characterization, and Analytical Applications

  • Salman. S. Alharthi,
  • Hamed. M. Al-Saidi

DOI
https://doi.org/10.3390/app10113895
Journal volume & issue
Vol. 10, no. 11
p. 3895

Abstract

Read online

A simple, selective, and inexpensive spectrophotometric method is described in the present study for estimation of trace concentrations of Cu2+ in water based on its reaction with chromogenic reagent namely 4-amino-3-mercapto-6-[2-(2-thienyl)vinyl]-1,2,4-triazin-5(4H)-one (AMT). The reaction between copper(II) ions and AMT reagent gives [Cu(L)(NO3)(H2O)2]•H2O complex, where L represents AMT molecule with NH group. The formed complex exhibits a sharp, and well-defined peak at λmax = 434 nm with a molar absorptivity (ε) of 1.90 × 104 L mol−1 cm−1, and Sandell’s factor of 0.003 μg mL−2. Absorbance of the [Cu(L)(NO3)(H2O)2]•H2O follows Beer’s law over a 0.7–25 μg mL−1 range with a detection limit of 0.011 μg mL−1. Validation of the submitted method was established by estimating Cu2+ in certified reference materials and actual sea and tap water samples. The results are compared with data obtained from copper concentration measurements using ICP-OES. The chemical structure of the Cu(II)-AMT complex was fully characterized by FT-IR, SEM, EDX, TGA, and ESR techniques.

Keywords