Applied Sciences (Jun 2024)

STOD: Towards Scalable Task-Oriented Dialogue System on MultiWOZ-API

  • Hengtong Lu,
  • Caixia Yuan,
  • Xiaojie Wang

DOI
https://doi.org/10.3390/app14125303
Journal volume & issue
Vol. 14, no. 12
p. 5303

Abstract

Read online

Task-oriented dialogue systems (TODs) enable users to complete specific goals and are widely used in practice. Although existing models have achieved delightful performance for single-domain dialogues, scalability to new domains is far from well explored. Traditional dialogue systems rely on domain-specific information like dialogue state and database (DB), which limits the scalability of such systems. In this paper, we propose a Scalable Task-Oriented Dialogue modeling framework (STOD). Instead of labeling multiple dialogue components, which have been adopted by previous work, we only predict structured API queries to interact with DB and generate responses based on the complete DB results. Further, we construct a new API-schema-based TOD dataset MultiWOZ-API with API query and DB result annotation based on MultiWOZ 2.1. We then propose MSTOD and CSTOD for multi-domain and cross-domain TOD systems, respectively. We perform extensive qualitative experiments to verify the effectiveness of our proposed framework. We find the following. (1) Scalability across multiple domains: MSTOD achieves 2% improvements than the previous state-of-the-art in the multi-domain TOD. (2) Scalability to new domains: our framework enables satisfying generalization capability to new domains, a significant margin of 10% to existing baselines.

Keywords