Effect of Oxidant Concentration on the Oxide Layer Thickness of 304 Stainless Steel
Kerong Wang,
Haixu Liu,
Ning Liu,
Xiaoming Chen,
Jiapeng Chen
Affiliations
Kerong Wang
Jiangsu Key Laboratory of Precision and Micro-Manufacturing Technology, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Haixu Liu
Jiangsu Key Laboratory of Precision and Micro-Manufacturing Technology, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Ning Liu
Jiangsu Key Laboratory of Precision and Micro-Manufacturing Technology, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Xiaoming Chen
Jiangsu Key Laboratory of Precision and Micro-Manufacturing Technology, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Jiapeng Chen
Jiangsu Key Laboratory of Precision and Micro-Manufacturing Technology, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Ultra-thin 304 stainless steel can be used to flexibly display substrates after they have been subjected to chemical mechanical polishing (CMP). The thickness of the chemical oxide layer directly affects the polishing efficiency and surface quality of 304 stainless steel. In the study presented in the following paper, the thickness variation of the chemical oxide layer of 304 stainless steel was analyzed following electrochemical corrosion under different oxidant concentration conditions. Furthermore, the impact of the oxidant concentration on the grooves, chips, and scratch depth–displacement–load curves was investigated during a nano-scratching experiment. Through this process, we were able to reveal the chemical reaction mechanism between 304 stainless steel materials and oxidizers. The corrosion rate was found to be faster at 8% oxidant content. The maximum values of the scratch depth and elastic–plastic critical load were determined to be 2153 nm and 58.47 mN, respectively.