IEEE Access (Jan 2024)

LEADNet: Detection of Alzheimer’s Disease Using Spatiotemporal EEG Analysis and Low-Complexity CNN

  • Digambar V. Puri,
  • Pramod H. Kachare,
  • Sandeep B. Sangle,
  • Raimund Kirner,
  • Abdoh Jabbari,
  • Ibrahim Al-Shourbaji,
  • Mohammed Abdalraheem,
  • Abdalla Alameen

DOI
https://doi.org/10.1109/ACCESS.2024.3435768
Journal volume & issue
Vol. 12
pp. 113888 – 113897

Abstract

Read online

Clinical methods for dementia detection are expensive and prone to human errors. Despite various computer-aided methods using electroencephalography (EEG) signals and artificial intelligence, a reliable detection of Alzheimer’s disease (AD) remains a challenge. The existing EEG-based machine learning models have limited performance or high computation complexity. Hence, there is a need for an optimal deep learning model for the detection of AD. This paper proposes a low-complexity EEG-based AD detection CNN called LEADNet to generate disease-specific features. LEADNet employs spatiotemporal EEG signals as input, two convolution layers for feature generation, a max-pooling layer for asymmetric spatiotemporal redundancy reduction, two fully-connected layers for nonlinear feature transformation and selection, and a softmax layer for disease probability prediction. Different quantitative measures are calculated using an open-source AD dataset to compare LEADNet and four pre-trained CNN models. The results show that the lightweight architecture of LEADNet has at least a 150-fold reduction in network parameters and the highest testing accuracy of 99.24% compared to pre-trained models. The investigation of individual layers of LEADNet showed successive improvements in feature transformation and selection for detecting AD subjects. A comparison with the state-of-the-art AD detection models showed that the highest accuracy, sensitivity, and specificity were achieved by the LEADNet model.

Keywords