Cancer Cell International (Dec 2021)
Identification and validation of cellular senescence patterns to predict clinical outcomes and immunotherapeutic responses in lung adenocarcinoma
Abstract
Abstract Background Aging and senescence can alter immune cell fitness and influence the efficacy of lung cancer treatments, especially immunotherapy. However, the correlations between cellular senescence and tumor microenvironment are still not clearly clarified and the value of cellular senescence-related genes in evaluating the immune infiltration and clinical outcomes of lung adenocarcinoma (LUAD) need further investigated. Methods We identified three cellular senescence clusters by NMF algorithm and correlated the cellular senescence clusters with the immune landscape in LUAD patients. A prognostic scoring system was established using random survival forest algorithm and validated in 4 external cohorts. Multivariate Cox regression analysis was performed to evaluate the prognostic value of the scoring system. Expression of LYPD3 was evaluated by immunohistochemistry in LUAD samples. Results Based on the mRNA expression profiles of 278 cellular senescence-related genes, three cellular senescence clusters with distinct prognosis were identified. We characterized three cellular senescence clusters by differences in biological processes, EMT score, expression of immunomodulatory genes, extent of intratumor heterogeneity and response to immunotherapy. Meanwhile, a cellular senescence-related scoring system (CSS) was established and validated as an independent prognostic factor and immunotherapy predictor of LUAD. Patients with low CSS was characterized by prolonged survival time. In response to anti-cancer drugs, patients with low CSS exhibited higher sensitivities to molecular drugs, such as Roscovitine (CDKs inhibitor), Lenaidornide (TNF-α inhibitor), MK2206 (Akt 1/2/3 inhibitor), and especially increased response to anti-PD-1/L1 immunotherapy. Conclusions This study demonstrated the correlations between cellular senescence patterns and tumor immune landscape in LUAD, which enhanced our understanding of the tumor immune microenvironment and provided new insights for improving the outcome of immunotherapy for LUAD patients.
Keywords