Nature Communications (Sep 2022)

Systematic identification of intron retention associated variants from massive publicly available transcriptome sequencing data

  • Yuichi Shiraishi,
  • Ai Okada,
  • Kenichi Chiba,
  • Asuka Kawachi,
  • Ikuko Omori,
  • Raúl Nicolás Mateos,
  • Naoko Iida,
  • Hirofumi Yamauchi,
  • Kenjiro Kosaki,
  • Akihide Yoshimi

DOI
https://doi.org/10.1038/s41467-022-32887-9
Journal volume & issue
Vol. 13, no. 1
pp. 1 – 13

Abstract

Read online

This paper proposed a novel in-silico framework for automatically screening disease-related variants and applied it to over 200,000 transcriptomes, providing an example to acquire medically relevant knowledge from publicly available sequence data.