In this paper, we studied the bouncing behavior of the cosmological models formulated in the background of the Hubble function in the F(R,G) theory of gravity, where R and G, respectively, denote the Ricci scalar and Gauss–Bonnet invariant. The actions of the bouncing cosmology are studied with a consideration of the different viable models that can resolve the difficulty of singularity in standard Big Bang cosmology. Both models show bouncing behavior and satisfy the bouncing cosmological properties. Models based on dynamical, deceleration, and energy conditions indicate the accelerating behavior at the late evolution time. The phantom at the bounce epoch is analogous to quintessence behavior. Finally, we formulate the perturbed evolution equations and investigate the stability of the two bouncing solutions.