Scientific Reports (Sep 2023)

Photothermal effects of terahertz-band and optical electromagnetic radiation on human tissues

  • Innem V. A. K Reddy,
  • Samar Elmaadawy,
  • Edward P. Furlani,
  • Josep M. Jornet

DOI
https://doi.org/10.1038/s41598-023-41808-9
Journal volume & issue
Vol. 13, no. 1
pp. 1 – 11

Abstract

Read online

Abstract The field of wireless communication has witnessed tremendous advancements in the past few decades, leading to more pervasive and ubiquitous networks. Human bodies are continually exposed to electromagnetic radiation, but typically this does not impact the body as the radiation is non-ionizing and the waves carry low power. However, with progress in the sixth generation (6G) of wireless networks and the adoption of the spectrum above 100 GHz in the next few years, higher power radiation is needed to cover larger areas, exposing humans to stronger and more prolonged radiation. Also, water has a high absorption coefficient at these frequencies and could lead to thermal effects on the skin. Hence, there is a need to study the radiation effects on human tissues, specifically the photothermal effects. In this paper, we present a custom-built, multi-physics model to investigate electromagnetic wave propagation in human tissue and study its subsequent photothermal effects. The proposed finite-element model consists of two segments—the first one estimates the intensity distribution along the beam path, while the second calculates the increase in temperature due to the wave distribution inside the tissue. We determine the intensity variation in the tissue using the radiative transfer equation and compare the results with Monte Carlo analysis and existing analytical models. The intensity information is then utilized to predict the rise in temperature with a bio-heat transfer module, powered by Pennes’ bioheat equation. The model is parametric, and we perform a systematic photothermal analysis to recognize the crucial variables responsible for the temperature growth inside the tissue, particularly for terahertz and near-infrared optical frequencies. Our numerical model can serve as a benchmark for studying the high-frequency radiation effects on complex heterogeneous media such as human tissue.