Journal of Integrative Agriculture (Jul 2023)

Effects of the potassium application rate on lipid synthesis and eating quality of two rice cultivars

  • Guang-yi CHEN,
  • Li-gong PENG,
  • Cong-mei LI,
  • Yun-biao TU,
  • Yan LAN,
  • Chao-yue WU,
  • Qiang DUAN,
  • Qiu-qiu ZHANG,
  • Hong YANG,
  • Tian LI

Journal volume & issue
Vol. 22, no. 7
pp. 2025 – 2040

Abstract

Read online

Lipid content has an important effect on rice eating quality, but the effects of fertilizer application rate on the lipid synthesis and eating quality of rice are not well understood. Potassium (K) has a strong influence on rice quality and the requirement for K fertilizer in rice is greater than for nitrogen (N) and phosphorus (P) fertilizers. To investigate the effects of K fertilizer on the lipid synthesis and eating quality of rice, we used Nanjing 9108 (NJ9108, japonica) and IR72 (indica) rice as experimental materials and four K levels: K0 (0 kg ha–1), K1 (90 kg ha–1), K2 (135 kg ha–1) and K3 (180 kg ha–1). The results showed that the lipid content, free fatty acid (FFA) content, unsaturated fatty acid (UFA) content, malonyl-CoA (MCA) content, phosphatidic acid (PA) content, lipid synthesis-related enzyme activities and eating quality first increased and then decreased with increasing K in both cultivars. The maximum values were obtained under K2. However, the saturated fatty acid (SFA) content showed the opposite trend. No significant differences were found in pyruvate (PYR) content among the K treatments. The protein and oxaloacetic acid (OAA) contents and phosphoenolpyruvate carboxylase (PEPCase) activity of NJ9108 first decreased and then increased with increasing K, and the minimum values were obtained under K2; while IR72 showed the opposite trend and the maximum values were obtained under K1. Overall, increasing K optimized the fatty acid components and increased the lipid content and eating quality of rice by enhancing lipid synthesis-related enzyme activities and regulating substrate competition for lipid and protein synthesis. The optimal K application rate for lipid synthesis, eating quality and grain yield was 135 kg ha–1 for both cultivars.

Keywords