Pharmaceutics (Apr 2021)

Photodynamic Therapy as an Oxidative Anti-Tumor Modality: Negative Effects of Nitric Oxide on Treatment Efficacy

  • Albert W. Girotti,
  • Jonathan M. Fahey,
  • Mladen Korbelik

DOI
https://doi.org/10.3390/pharmaceutics13050593
Journal volume & issue
Vol. 13, no. 5
p. 593

Abstract

Read online

Anti-tumor photodynamic therapy (PDT) is a unique oxidative stress-based modality that has proven highly effective on a variety of solid malignancies. PDT is minimally invasive and generates cytotoxic oxidants such as singlet molecular oxygen (1O2). With high tumor site-specificity and limited off-target negative effects, PDT is increasingly seen as an attractive alternative or follow-up to radiotherapy or chemotherapy. Nitric oxide (NO) is a short-lived bioactive free radical molecule that is exploited by many malignant tumors to promote cell survival, proliferation, and metastatic expansion. Typically generated endogenously by inducible nitric oxide synthase (iNOS/NOS2), low level NO can also antagonize many therapeutic interventions, including PDT. In addition to elevating resistance, iNOS-derived NO can stimulate growth and migratory aggressiveness of tumor cells that survive a PDT challenge. Moreover, NO from PDT-targeted cells in any given population is known to promote such aggressiveness in non-targeted counterparts (bystanders). Each of these negative responses to PDT and their possible underlying mechanisms will be discussed in this chapter. Promising pharmacologic approaches for mitigating these NO-mediated responses will also be discussed.

Keywords