Neurobiology of Stress (Sep 2024)
Elevated GABAergic neurotransmission prevents chronic intermittent ethanol induced hyperexcitability of intrinsic and extrinsic inputs to the ventral subiculum of female rats
Abstract
With the recent rise in the rate of alcohol use disorder (AUD) in women, the historical gap between men and women living with this condition is narrowing. While there are many commonalities in how men and women are impacted by AUD, an accumulating body of evidence is revealing sex-dependent adaptations that may require distinct therapeutic approaches. Preclinical rodent studies are beginning to shed light on sex differences in the effects of chronic alcohol exposure on synaptic activity in a number of brain regions. Prior studies from our laboratory revealed that, while withdrawal from chronic intermittent ethanol (CIE), a commonly used model of AUD, increased excitability in the ventral hippocampus (vHC) of male rats, this same treatment had the opposite effect in females. A follow-up study not only expanded on the synaptic mechanisms of these findings in male rats, but also established a CIE-dependent increase in the excitatory-inhibitory (E-I) balance of a glutamatergic projection from the basolateral amygdala to vHC (BLA-vHC). This pathway modulates anxiety-like behavior and could help explain the comorbid occurrence of anxiety disorders in individuals suffering from AUD. The present study sought to conduct a similar analysis of CIE effects on both synaptic mechanisms in the vHC and adaptations in the BLA-vHC pathway of female rats. Our findings indicate that CIE increases the strength of inhibitory neurotransmission in the vHC and that this sex-specific adaptation blocks, or at least delays, the increases in intrinsic vHC excitability and BLA-vHC synaptic transmission observed in males. Our findings establish the BLA-vHC pathway and the vHC as important circuitry to consider for future studies directed at identifying sex-dependent therapeutic approaches to AUD.