Journal of Applied Mathematics (Jan 2015)
A Class of Weighted Low Rank Approximation of the Positive Semidefinite Hankel Matrix
Abstract
We consider the weighted low rank approximation of the positive semidefinite Hankel matrix problem arising in signal processing. By using the Vandermonde representation, we firstly transform the problem into an unconstrained optimization problem and then use the nonlinear conjugate gradient algorithm with the Armijo line search to solve the equivalent unconstrained optimization problem. Numerical examples illustrate that the new method is feasible and effective.