Symmetry (Jun 2022)

Eximious Sandstorm Image Improvement Using Image Adaptive Ratio and Brightness-Adaptive Dark Channel Prior

  • Ho Sang Lee

DOI
https://doi.org/10.3390/sym14071334
Journal volume & issue
Vol. 14, no. 7
p. 1334

Abstract

Read online

Sandstorm images have a color cast by sand particles. Hazy images have similar features to sandstorm images due to these images having a common obtaining process. To improve hazy images, various dehazing methods are being studied. However, not all methods are appropriate for enhancing sandstorm images as they experience color degradation via an imbalanced color channel and degraded color distributed around the image. Therefore, this paper proposes two steps to improve sandstorm images. The first is a color-balancing step using the mean ratio of the color channel between red and other colors. The sandstorm image has a degraded color channel, and therefore, the attenuated color channel has different average values for each color channel; the red channel’s average value is the highest, and that of the blue channel is the lowest. Using this property, this paper balances the color of images via the ratio of color channels. Although the image is enhanced, if the red channel is still the most abundant, the enhanced image may have a reddish color. Therefore, to enhance the image naturally, the red channel is adjusted by the average ratio of the color channel; those measures (as with the average ratio of color channels) are called image adaptive ratio (IAR). Because color-balanced sandstorm images have the same characteristics as hazy images, to enhance them, a dehazing method is applied. Ordinary dehazing methods often use dark channel prior (DCP). Though DCP estimates the dark region of an image, because the intensity of brightness is too high, the estimated DCP is not sufficiently dark. Additionally, DCP is able to show the artificial color shift in the enhanced image. To compensate for this point, this paper proposes a brightness-adaptive dark channel prior (BADCP) using a normalized color channel. The image improved using the proposed method has no color distortion or artificial color. The experimental results show the superior performance of the proposed method in comparison with state-of-the-art dehazing methods, both subjectively and objectively.

Keywords