Remote Sensing (May 2022)

Prediction of GPS Satellite Clock Offset Based on an Improved Particle Swarm Algorithm Optimized BP Neural Network

  • Dong Lv,
  • Genyou Liu,
  • Jikun Ou,
  • Shengliang Wang,
  • Ming Gao

DOI
https://doi.org/10.3390/rs14102407
Journal volume & issue
Vol. 14, no. 10
p. 2407

Abstract

Read online

Satellite clock offset is an important factor affecting the accuracy of real-time precise point positioning (RT-PPP). Due to missing real-time service (RTS) products provided by the International GNSS Service (IGS) or network faults, users may not obtain effective real-time corrections, resulting in the unavailability of RT-PPP. Considering this issue, an improved back propagation (BP) neural network optimized by heterogeneous comprehensive learning and dynamic multi-swarm particle swarm optimizer (HPSO-BP) is proposed for clock offset prediction. The new model uses the particle swarm optimizer to optimize the initial parameters of the BP neural network, which can avoid the instability and over-fitting problems of the traditional BP neural network. IGS RTS product data is selected for the experimental analysis; the results demonstrate that the average prediction precision of the HPSO-BP model for 20-min and 60-min is better than 0.15 ns, improving by approximately 85% compared to traditional models including the linear polynomial (LP) model, the quadratic polynomial (QP) model, the gray system model (GM (1,1)), and the ARMA time series model. It indicates that the HPSO-BP model has reasonable practicability and stability in the short-term satellite clock offset prediction, and its prediction performance is superior to traditional models. Therefore, in practical applications, the clock offset products predicted by the HPSO-BP model can meet the centimeter-level positioning accuracy requirements of RT-PPP.

Keywords