Gels (Dec 2022)
Comparative Study of Physicochemical Properties of Alginate Composite Hydrogels Prepared by the Physical Blending and Electrostatic Assembly Methods
Abstract
Alginate hydrogel commonly suffers from defects, such as weak mechanical properties, the shortage of long-term stability in physiological medium and the lack of mammalian cell adhesivity due to its strong hydrophilicity in biomedical application. For this reason, the homogeneous alginate hydrogels (Alg Gel) were successfully prepared by the D-glucono-δ-lactone/hydroxyapatite (HAP/GDL) cross-linking system, and then, the physical blending and alternating electrostatic assembly technology were proposed to fabricate alginate composite hydrogels (Alg-GT, Alg-CS-GT and ALG/GT-CS). The feasibility of the design methods was verified through the comparative analysis of their physicochemical properties and biological activity. In particular, the effects of physical blending and alternating electrostatic assembly technology on the pore structure, mechanical properties, swelling, degradation, cell adhesion and proliferation of composite hydrogels were also investigated. Experimental results showed that the formation of polyelectrolyte complexes by electrostatic assembly between biological macromolecules and the covalent cross-linking of EDC/NHS to GT improved the vulnerability of ion cross-linking, enhanced the mechanical properties and swelling stability of the composite hydrogels, and regulated their pore structure and in vitro biodegradability properties. Furthermore, MC3T3-E1 cells could exhibit good cell adhesion, cell viability and cell proliferation on the alginate composite hydrogels. Among them, Alg-CS-GT showed the best cell proliferation ability and differentiation effect due to its good cell adhesion. In view of the excellent physicochemical properties and biological activity of Alg-CS-GT, it exhibited great potential in biomedical application for tissue engineering.
Keywords