نشریه مهندسی دریا (Apr 2019)
Investigation of the Float Body Geometry on the Power of Wave Energy Absorber Converter Using Mooring Catenary
Abstract
This paper presents the effect of hydrodynamic parameters of the two-body converters of a point wave absorber on the amount of power output. This converter includes two submerged and floating bodies which are connected to the spring-damper system. The whole of the converter is connected to the sea bed by mooring catenary. The relative displacement of the floating body and the submerged body is the main factor in generating electrical energy. Since the calculation of hydrodynamic coefficients has a significant effect on the solution of dynamic equations, this study focused on the calculation of added mass and hydrodynamic damping by boundary element method using the ANSYS-AQWA software. Also, this paper investigates the effect of floating borehole geometry on the hydrodynamic parameters and the extracted power of the converter using complementary analysis on the domain of time and frequency. Comparison of numerical simulation outputs and the results from the laboratory work which had carried out by Sandiego researchers in 2011, shows the suitable accuracy of the simulation. According to the results, with the two meters increase in buoy diameter, the power output will increase by 20%, and the output power for the half- conical is 17% more than the hemisphere.