Atmospheric Chemistry and Physics (Nov 2021)
Nighttime and daytime dark oxidation chemistry in wildfire plumes: an observation and model analysis of FIREX-AQ aircraft data
- Z. C. J. Decker,
- Z. C. J. Decker,
- Z. C. J. Decker,
- M. A. Robinson,
- M. A. Robinson,
- M. A. Robinson,
- K. C. Barsanti,
- I. Bourgeois,
- I. Bourgeois,
- M. M. Coggon,
- M. M. Coggon,
- J. P. DiGangi,
- G. S. Diskin,
- F. M. Flocke,
- A. Franchin,
- A. Franchin,
- A. Franchin,
- C. D. Fredrickson,
- G. I. Gkatzelis,
- G. I. Gkatzelis,
- G. I. Gkatzelis,
- S. R. Hall,
- H. Halliday,
- H. Halliday,
- C. D. Holmes,
- L. G. Huey,
- Y. R. Lee,
- J. Lindaas,
- A. M. Middlebrook,
- D. D. Montzka,
- R. Moore,
- J. A. Neuman,
- J. A. Neuman,
- J. B. Nowak,
- B. B. Palm,
- B. B. Palm,
- J. Peischl,
- J. Peischl,
- F. Piel,
- F. Piel,
- P. S. Rickly,
- P. S. Rickly,
- A. W. Rollins,
- T. B. Ryerson,
- R. H. Schwantes,
- R. H. Schwantes,
- K. Sekimoto,
- L. Thornhill,
- L. Thornhill,
- J. A. Thornton,
- G. S. Tyndall,
- K. Ullmann,
- P. Van Rooy,
- P. R. Veres,
- C. Warneke,
- C. Warneke,
- R. A. Washenfelder,
- A. J. Weinheimer,
- E. Wiggins,
- E. Wiggins,
- E. Winstead,
- E. Winstead,
- A. Wisthaler,
- A. Wisthaler,
- C. Womack,
- C. Womack,
- S. S. Brown,
- S. S. Brown
Affiliations
- Z. C. J. Decker
- NOAA Chemical Sciences Laboratory (CSL), Boulder, CO 80305, USA
- Z. C. J. Decker
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Co 80309, USA
- Z. C. J. Decker
- Department of Chemistry, University of Colorado Boulder, Boulder, CO 80309-0215, USA
- M. A. Robinson
- NOAA Chemical Sciences Laboratory (CSL), Boulder, CO 80305, USA
- M. A. Robinson
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Co 80309, USA
- M. A. Robinson
- Department of Chemistry, University of Colorado Boulder, Boulder, CO 80309-0215, USA
- K. C. Barsanti
- Department of Chemical and Environmental Engineering, College of Engineering – Center for Environmental Research and Technology (CE-CERT), University of California, Riverside, Riverside, CA 92507, USA
- I. Bourgeois
- NOAA Chemical Sciences Laboratory (CSL), Boulder, CO 80305, USA
- I. Bourgeois
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Co 80309, USA
- M. M. Coggon
- NOAA Chemical Sciences Laboratory (CSL), Boulder, CO 80305, USA
- M. M. Coggon
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Co 80309, USA
- J. P. DiGangi
- NASA Langley Research Center, MS 483, Hampton, VA 23681, USA
- G. S. Diskin
- NASA Langley Research Center, MS 483, Hampton, VA 23681, USA
- F. M. Flocke
- Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder, CO 80301, USA
- A. Franchin
- NOAA Chemical Sciences Laboratory (CSL), Boulder, CO 80305, USA
- A. Franchin
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Co 80309, USA
- A. Franchin
- Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder, CO 80301, USA
- C. D. Fredrickson
- Department of Atmospheric Sciences, University of Washington, Seattle, WA 98195, USA
- G. I. Gkatzelis
- NOAA Chemical Sciences Laboratory (CSL), Boulder, CO 80305, USA
- G. I. Gkatzelis
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Co 80309, USA
- G. I. Gkatzelis
- now at: Institute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich GmbH, Jülich, Germany
- S. R. Hall
- Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder, CO 80301, USA
- H. Halliday
- NASA Langley Research Center, MS 483, Hampton, VA 23681, USA
- H. Halliday
- now at: EPA Office of Research and Development, RTP, NC 27711, USA
- C. D. Holmes
- Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, FL 32304, USA
- L. G. Huey
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Y. R. Lee
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- J. Lindaas
- Department of Atmospheric Science, Colorado State University, Fort Collins, CO 80523, USA
- A. M. Middlebrook
- NOAA Chemical Sciences Laboratory (CSL), Boulder, CO 80305, USA
- D. D. Montzka
- Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder, CO 80301, USA
- R. Moore
- Science Systems and Applications, Inc. (SSAI), Hampton, VA 23666, USA
- J. A. Neuman
- NOAA Chemical Sciences Laboratory (CSL), Boulder, CO 80305, USA
- J. A. Neuman
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Co 80309, USA
- J. B. Nowak
- Science Systems and Applications, Inc. (SSAI), Hampton, VA 23666, USA
- B. B. Palm
- Department of Atmospheric Sciences, University of Washington, Seattle, WA 98195, USA
- B. B. Palm
- now at: Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder, CO 80301, USA
- J. Peischl
- NOAA Chemical Sciences Laboratory (CSL), Boulder, CO 80305, USA
- J. Peischl
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Co 80309, USA
- F. Piel
- Institute for Ion Physics and Applied Physics, University of Innsbruck, 6020 Innsbruck, Austria
- F. Piel
- Department of Chemistry, University of Oslo, 0315 Oslo, Norway
- P. S. Rickly
- NOAA Chemical Sciences Laboratory (CSL), Boulder, CO 80305, USA
- P. S. Rickly
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Co 80309, USA
- A. W. Rollins
- NOAA Chemical Sciences Laboratory (CSL), Boulder, CO 80305, USA
- T. B. Ryerson
- NOAA Chemical Sciences Laboratory (CSL), Boulder, CO 80305, USA
- R. H. Schwantes
- NOAA Chemical Sciences Laboratory (CSL), Boulder, CO 80305, USA
- R. H. Schwantes
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Co 80309, USA
- K. Sekimoto
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Kanagawa, 236-0027, Japan
- L. Thornhill
- NASA Langley Research Center, MS 483, Hampton, VA 23681, USA
- L. Thornhill
- Science Systems and Applications, Inc. (SSAI), Hampton, VA 23666, USA
- J. A. Thornton
- Department of Atmospheric Sciences, University of Washington, Seattle, WA 98195, USA
- G. S. Tyndall
- Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder, CO 80301, USA
- K. Ullmann
- Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder, CO 80301, USA
- P. Van Rooy
- Department of Chemical and Environmental Engineering, College of Engineering – Center for Environmental Research and Technology (CE-CERT), University of California, Riverside, Riverside, CA 92507, USA
- P. R. Veres
- NOAA Chemical Sciences Laboratory (CSL), Boulder, CO 80305, USA
- C. Warneke
- NOAA Chemical Sciences Laboratory (CSL), Boulder, CO 80305, USA
- C. Warneke
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Co 80309, USA
- R. A. Washenfelder
- NOAA Chemical Sciences Laboratory (CSL), Boulder, CO 80305, USA
- A. J. Weinheimer
- Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder, CO 80301, USA
- E. Wiggins
- NASA Langley Research Center, MS 483, Hampton, VA 23681, USA
- E. Wiggins
- Universities Space Research Association, Columbia, MD, USA
- E. Winstead
- NASA Langley Research Center, MS 483, Hampton, VA 23681, USA
- E. Winstead
- Science Systems and Applications, Inc. (SSAI), Hampton, VA 23666, USA
- A. Wisthaler
- Institute for Ion Physics and Applied Physics, University of Innsbruck, 6020 Innsbruck, Austria
- A. Wisthaler
- Department of Chemistry, University of Oslo, 0315 Oslo, Norway
- C. Womack
- NOAA Chemical Sciences Laboratory (CSL), Boulder, CO 80305, USA
- C. Womack
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Co 80309, USA
- S. S. Brown
- NOAA Chemical Sciences Laboratory (CSL), Boulder, CO 80305, USA
- S. S. Brown
- Department of Chemistry, University of Colorado Boulder, Boulder, CO 80309-0215, USA
- DOI
- https://doi.org/10.5194/acp-21-16293-2021
- Journal volume & issue
-
Vol. 21
pp. 16293 – 16317
Abstract
Wildfires are increasing in size across the western US, leading to increases in human smoke exposure and associated negative health impacts. The impact of biomass burning (BB) smoke, including wildfires, on regional air quality depends on emissions, transport, and chemistry, including oxidation of emitted BB volatile organic compounds (BBVOCs) by the hydroxyl radical (OH), nitrate radical (NO3), and ozone (O3). During the daytime, when light penetrates the plumes, BBVOCs are oxidized mainly by O3 and OH. In contrast, at night or in optically dense plumes, BBVOCs are oxidized mainly by O3 and NO3. This work focuses on the transition between daytime and nighttime oxidation, which has significant implications for the formation of secondary pollutants and loss of nitrogen oxides (NOx=NO+NO2) and has been understudied. We present wildfire plume observations made during FIREX-AQ (Fire Influence on Regional to Global Environments and Air Quality), a field campaign involving multiple aircraft, ground, satellite, and mobile platforms that took place in the United States in the summer of 2019 to study both wildfire and agricultural burning emissions and atmospheric chemistry. We use observations from two research aircraft, the NASA DC-8 and the NOAA Twin Otter, with a detailed chemical box model, including updated phenolic mechanisms, to analyze smoke sampled during midday, sunset, and nighttime. Aircraft observations suggest a range of NO3 production rates (0.1–1.5 ppbv h−1) in plumes transported during both midday and after dark. Modeled initial instantaneous reactivity toward BBVOCs for NO3, OH, and O3 is 80.1 %, 87.7 %, and 99.6 %, respectively. Initial NO3 reactivity is 10–104 times greater than typical values in forested or urban environments, and reactions with BBVOCs account for >97 % of NO3 loss in sunlit plumes (jNO2 up to 4×10-3s-1), while conventional photochemical NO3 loss through reaction with NO and photolysis are minor pathways. Alkenes and furans are mostly oxidized by OH and O3 (11 %–43 %, 54 %–88 % for alkenes; 18 %–55 %, 39 %–76 %, for furans, respectively), but phenolic oxidation is split between NO3, O3, and OH (26 %–52 %, 22 %–43 %, 16 %–33 %, respectively). Nitrate radical oxidation accounts for 26 %–52 % of phenolic chemical loss in sunset plumes and in an optically thick plume. Nitrocatechol yields varied between 33 % and 45 %, and NO3 chemistry in BB plumes emitted late in the day is responsible for 72 %–92 % (84 % in an optically thick midday plume) of nitrocatechol formation and controls nitrophenolic formation overall. As a result, overnight nitrophenolic formation pathways account for 56 %±2 % of NOx loss by sunrise the following day. In all but one overnight plume we modeled, there was remaining NOx (13 %–57 %) and BBVOCs (8 %–72 %) at sunrise.