PLoS ONE (Jan 2014)

Using biplanar fluoroscopy to guide radiopaque vascular injections: a new method for vascular imaging.

  • Haley D O'Brien,
  • Susan H Williams

DOI
https://doi.org/10.1371/journal.pone.0097940
Journal volume & issue
Vol. 9, no. 5
p. e97940

Abstract

Read online

Studying vascular anatomy, especially in the context of relationships with hard tissues, is of great interest to biologists. Vascular studies have provided significant insight into physiology, function, phylogenetic relationships, and evolutionary patterns. Injection of resin or latex into the vascular system has been a standard technique for decades. There has been a recent surge in popularity of more modern methods, especially radiopaque latex vascular injection followed by CT scanning and digital "dissection." This technique best displays both blood vessels and bone, and allows injections to be performed on cadaveric specimens. Vascular injection is risky, however, because it is not a standardizable technique, as each specimen is variable with regard to injection pressure and timing. Moreover, it is not possible to view the perfusion of injection medium throughout the vascular system of interest. Both data and rare specimens can therefore be lost due to poor or excessive perfusion. Here, we use biplanar video fluoroscopy as a technique to guide craniovascular radiopaque latex injection. Cadaveric domestic pigs (Sus scrofa domestica) and white-tailed deer (Odocoileus virginianus) were injected with radiopaque latex under guidance of fluoroscopy. This method was found to enable adjustments, in real-time, to the rate, location, and pressure at which latex is injected in order to avoid data and specimen loss. In addition to visualizing the injection process, this technique can be used to determine flow patterns, and has facilitated the development of consistent markers for complete perfusion.