Separations (Dec 2021)

Hemp Chemotype Definition by Cannabinoids Characterization Using LC-ESI(+)-LTQ-FTICR MS and Infrared Multiphoton Dissociation

  • Filomena Lelario,
  • Raffaella Pascale,
  • Giuliana Bianco,
  • Laura Scrano,
  • Sabino Aurelio Bufo

DOI
https://doi.org/10.3390/separations8120245
Journal volume & issue
Vol. 8, no. 12
p. 245

Abstract

Read online

The development and application of advanced analytical methods for a comprehensive analysis of Cannabis sativa L. extracts plays a pivotal role in order to have a reliable evaluation of their chemotype definition to guarantee the efficacy and safety in pharmaceutical use. This paper deals with the qualitative and quantitative determination of cannabidiol (CBD), tetrahydrocannabinol (THC), cannabinol (CBN), tetrahydrocannabivarin (THCV), cannabidivarin (CBDV), and cannabigerol (CBG) based on a liquid chromategraphy-mass spectrometry (LC-MS) method using electrospray ionization in positive mode (ESI+), coupled with a hybrid quadrupole linear ion trap (LTQ) and Fourier transform ion cyclotron resonance mass spectrometer (FTICR-MS). For the first time, structural information of phytocannabinoids is available upon precursor ions’ isolation within the FTICR trapping cell and subsequent fragmentation induced by infrared multiphoton dissociation (IRMPD). Such fragmentation and accurate mass measurement of product ions, alongside collision-induced dissociation (CID) within LTQ, was advantageous to propose a reliable fragmentation pattern for each compound. Then, the proposed LC-ESI(+)-LTQ-FTICR MS method was successfully applied to the hemp chemotype definition of three registered Italian accessions of hemp C. sativa plants (Carmagnola C.S., Carmagnola, and Eletta Campana), thus resulting in the Eletta Campana accession being the best one for cannabis product manufacturing.

Keywords