Journal of Dental Medicine (Jul 2019)
Evaluation of microtensile bond strength of repaired dental resin composite using different surface treatment techniques: A laboratory study
Abstract
Background and Aims: Today, resin composites are one of the most commonly used materials in restorative dentistry. However, failure in resin treatments is also common due to its chemical nature and its high talent for decay recurrence. According to conservative approaches, "conservative" treatments are more likely to be considered than "Replacement" of damaged remedies. The purpose of this study was to compare different surface preparation methods on composite surfaces to achieve the highest bond strength between the old and new composites after accelerated aging. Materials and Methods: First, composite cylinders with a diameter of 6 and a height of 5 mm were prepared using an incremental technique and a microhybrid resin composite. The specimens were stored in distilled water for 6 months at 37°C and then the surfaces of all aged compsites were roughened using diamond milling followed by phosphoric acid etching. The specimens were randomly subjected into five groups. Group 1: GC Composite Primer. Group 2: Universal bonding containing silane (Kuraray). Group 3: Self etching adhesive (SE bond; Kuraray) Group 4: silane (Ivoclar Vivadent) + Second bottle of SE bond bonding system (Kuraray). Group 5: control group with no treatment. Then, 5 mm incremental of new composite (similar to the aged composite with different color) were placed on the surfaces of specimens, sectioned, and thermocycled for 3000 cycles for the microtensile bond strength evaluation. The specimens were evaluated using a stereomicroscope after failure. Data were analyzed by one-way ANOVA and Post Hoc Tukey test. Results: The specimens in which silane and SE bond were used showed the highest mean microtensile bond strength and those treated by universal bond showed the least bond strength which were significantly different (P=0.02). All samples had cohesive failure patterns in all groups and the percentage of failures in old and new composites did not differ significantly (P=0.69). Conclusion: : Based on the results, all surface preparations used in this study could provide an appropriate bond strength for repair of old composite restorations. Also, the microtensile bond strength between the old and new composites was higher than the cohesive strength of resin composite itself. However, the mean microtensile bond strength value for the group treated by universal bond was significantly lower than those treated by silane and hydrophobic containing bonding system.