Materials (Sep 2021)

Spin Polarization and Magnetic Moment in Silicon Carbide Grown by the Method of Coordinated Substitution of Atoms

  • Sergey A. Kukushkin,
  • Andrey V. Osipov

DOI
https://doi.org/10.3390/ma14195579
Journal volume & issue
Vol. 14, no. 19
p. 5579

Abstract

Read online

In the present work, a new method for obtaining silicon carbide of the cubic polytype 3C-SiC with silicon vacancies in a stable state is proposed theoretically and implemented experimentally. The idea of the method is that the silicon vacancies are first created by high-temperature annealing in a silicon substrate Si(111) doped with boron B, and only then is this silicon converted into 3C-SiC(111), due to a chemical reaction with carbon monoxide CO. A part of the silicon vacancies that have bypassed “chemical selection” during this transformation get into the SiC. As the process of SiC synthesis proceeds at temperatures of ~1350 °C, thermal fluctuations in the SiC force the carbon atom C adjacent to the vacancy to jump to its place. In this case, an almost flat cluster of four C atoms and an additional void right under it are formed. This stable state of the vacancy, by analogy with NV centers in diamond, is designated as a C4V center. The C4V centers in the grown 3C-SiC were detected experimentally by Raman spectroscopy and spectroscopic ellipsometry. Calculations performed by methods of density-functional theory have revealed that the C4V centers have a magnetic moment equal to the Bohr magneton μB and lead to spin polarization in the SiC if the concentration of C4V centers is sufficiently high.

Keywords