Plants (Jul 2023)

Overcoming Difficulties in Molecular Biological Analysis through a Combination of Genetic Engineering, Genome Editing, and Genome Analysis in Hexaploid <i>Chrysanthemum morifolium</i>

  • Katsutomo Sasaki,
  • Tsuyoshi Tanaka

DOI
https://doi.org/10.3390/plants12132566
Journal volume & issue
Vol. 12, no. 13
p. 2566

Abstract

Read online

Chrysanthemum is one of the most commercially important ornamental plants globally, of which many new varieties are produced annually. Among these new varieties, many are the result of crossbreeding, while some are the result of mutation breeding. Recent advances in gene and genome sequencing technology have raised expectations about the use of biotechnology and genome breeding to efficiently breed new varieties. However, some features of chrysanthemum complicate molecular biological analysis. For example, chrysanthemum is a hexaploid hyperploid plant with a large genome, while its genome is heterogeneous because of the difficulty of obtaining pure lines due to self-incompatibility. Despite these difficulties, an increased number of reports on transcriptome analysis in chrysanthemum have been published as a result of recent technological advances in gene sequencing, which should deepen our understanding of the properties of these plants. In this review, we discuss recent studies using gene engineering, genome editing, and genome analysis, including transcriptome analysis, to analyze chrysanthemum, as well as the current status of and future prospects for chrysanthemum.

Keywords