PLoS ONE (Jan 2013)
A mouse model of adoptive immunotherapeutic targeting of autoimmune arthritis using allo-tolerogenic dendritic cells.
Abstract
OBJECTIVE: Tolerogenic dendritic cells (tDCs) are immunosuppressive cells with potent tolerogenic ability and are promising immunotherapeutic tools for treating rheumatoid arthritis (RA). However, it is currently unknown whether allogeneic tDCs (allo-tDCs) induce tolerance in RA, and whether the numbers of adoptively transferred allo-tDCs, or the requirement for pulsing with relevant auto-antigens are important. METHODS: tDCs were derived from bone marrow precursors of C57BL/B6 mice, which were induced in vitro by GM-CSF, IL-10 and TGF-β1. Collagen-induced arthritis (CIA) was modeled in D1 mice by immunization with type II collagen (CII) to test the therapeutic ability of allo-tDCs against CIA. Clinical and histopathologic scores, arthritic incidence, cytokine and anti-CII antibody secretion, and CD4(+)Th subsets were analyzed. RESULTS: tDCs were characterized in vitro by a stable immature phonotype and a potent immunosuppressive ability. Following adoptive transfer of low doses (5×10(5)) of CII-loaded allo-tDCs, a remarkable anti-arthritic activity, improved clinical scores and histological end-points were found. Serological levels of inflammatory cytokines and anti-CII antibodies were also significantly lower in CIA mice treated with CII-pulsed allo-tDCs as compared with allo-tDCs. Moreover, treatment with allo-tDCs altered the proportion of Treg/Th17 cells. CONCLUSION: These findings suggested that allo-tDCs, especially following antigen loading, reduced the severity of CIA in a dose-dependent manner. The dampening of CIA was associated with modulated cytokine secretion, Treg/Th17 polarization and inhibition of anti-CII secretion. This study highlights the potential therapeutic utility of allo-tDCs in autoimmune arthritis and should facilitate the future design of allo-tDC immunotherapeutic strategies against RA.